3.211 \(\int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=121 \[ \frac{6 a^2 \sin (c+d x)}{5 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{12 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

(2*a^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (6*a^2*Sin[c + d*x])/(5*d*Cos[c + d*x
]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (12*a^2*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.173241, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2762, 21, 2772, 2771} \[ \frac{6 a^2 \sin (c+d x)}{5 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{12 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(7/2),x]

[Out]

(2*a^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (6*a^2*Sin[c + d*x])/(5*d*Cos[c + d*x
]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (12*a^2*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{1}{5} (2 a) \int \frac{-\frac{9 a}{2}-\frac{9}{2} a \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{1}{5} (9 a) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{6 a^2 \sin (c+d x)}{5 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{1}{5} (6 a) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{6 a^2 \sin (c+d x)}{5 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{12 a^2 \sin (c+d x)}{5 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.150755, size = 62, normalized size = 0.51 \[ \frac{2 a (3 \cos (c+d x)+3 \cos (2 (c+d x))+4) \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)}}{5 d \cos ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(7/2),x]

[Out]

(2*a*Sqrt[a*(1 + Cos[c + d*x])]*(4 + 3*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Tan[(c + d*x)/2])/(5*d*Cos[c + d*x]^
(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.338, size = 65, normalized size = 0.5 \begin{align*} -{\frac{2\,a \left ( 6\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-3\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,\cos \left ( dx+c \right ) -1 \right ) }{5\,d\sin \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)/cos(d*x+c)^(7/2),x)

[Out]

-2/5/d*a*(6*cos(d*x+c)^3-3*cos(d*x+c)^2-2*cos(d*x+c)-1)*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)/cos(d*x+c)^(5/2)

________________________________________________________________________________________

Maxima [B]  time = 1.57754, size = 293, normalized size = 2.42 \begin{align*} \frac{4 \,{\left (\frac{5 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{10 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{7 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{2 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}{\left (\frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{5 \, d{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{7}{2}}{\left (-\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{7}{2}}{\left (\frac{2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

4/5*(5*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 10*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^
3 + 7*sqrt(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 2*sqrt(2)*a^(3/2)*sin(d*x + c)^7/(cos(d*x + c) + 1
)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)
/(cos(d*x + c) + 1) + 1)^(7/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 +
1))

________________________________________________________________________________________

Fricas [A]  time = 1.61888, size = 194, normalized size = 1.6 \begin{align*} \frac{2 \,{\left (6 \, a \cos \left (d x + c\right )^{2} + 3 \, a \cos \left (d x + c\right ) + a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{5 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/5*(6*a*cos(d*x + c)^2 + 3*a*cos(d*x + c) + a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*co
s(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)